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Fast Numerical Solution of KKR-CPA Equations:
Testing New Algorithms
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Some numerical methods for the solution of KKR-CPA equations are
discussed and tested. New, efficient, computational algorithms are
proposed, allowing a remarkable reduction of computing time and a
qoad relinbitity in evaluatingg spectial quantities. € 1994 Academin Pess, Ine.

I, INTRODUCTION

The Korringa-Kohn-Rostoker multiple scattering
method, together with the coherent potential approxima-
tion (KKR-CPA) [1, 2], is today one of the best theoretical
approaches to study the electronic properties in random
metal alloys. Moreover, the KKR-CPA calculations, within
the density lunctional theory in local density approximation
(LDA) [3, 4], make it feasible to develop an ab initio theory
for 1he disordered state of greal prediction capabilities.
Recently, the extension of the method to the relativistic case
[5, 6] allowed the study of heavy metal alloys, although
with a big increase in the computational resources needed.

In the literature, several accurate KKR-CPA calculations
of the electronic properties {e.g., density of states, Bloch
spectral functions, Fermi surfaces, etc.) [7] of random
alloys are reported. Thermodynamical properties, such as
heat of mixing, phase diagrams, etc. also can be obtained in
the framework of the LDA [8].

Notwithstanding such a Fivourable circumstance, the
applicabitity of this method is actually limited by the
mmount of computing lime needed to solve the double
system of non-linear equations imposed by the LDA and the
KK R-CPA: the first being relative to the achicvement of the
charge self-consistency and total energy minimization
{Euler—Lagrange equations); the second, the central issue of
the KKR-CPA theory, being relative to the achievement of
the configurational ensemble averages [3, 4, 7). Relative to
the last, in a recent paper, Akai [9] introduced a “fast”
KKR-CPA technique that reduces drastically the amount of
compuling time without sacrificing the accuracy too much.
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In the present paper we discuss the sources of such an
inaccuracy and propose a modified version of Akai's’
method without sacrificing the accuracy at all.

This paper is organised as follows: in Scction 2 we discuss
some numerical aspects of the KKR-CPA method and out-
line a fast numerical algorithm for its practical implementa-
tton; in Section 3 the results of numerical tests are reported
and we study the advantages and the limits of our computa-
tional scheme; Section 4 contains some concluding remarks
and a brief discussion about the further possible extensions
of our numerical scheme.

2, NUMERICAL SOLUTION OF KKR-CPA EQUATIONS

2a. The KKR-CPA Method

According to multiple scattering theory, the site diagonal
matrix elements “(£) and 7°(E) of the “on energy shell”
scattering path operator and the corresponding single-site
effective scattering matrix are related by

if
T vw'(E

1

fg5z

where G,,.(q, E) are the KKR structure constants, y=1,
labels the sth irreducible representation of the lattice
{double) point group and the integral runs over the volume
ol the lirst Brillouin zone, €24, The coherent potential
approximation {CPA) states that for a random alloy, whose
different components of concentration ¢, are labeled by a,
the coherent scattering matrices . may be determined by
imposing that the substitution of a single scatterer & in the
effective medium does not modify the total scattering, so
that

Y D (E) TAEY),, =1, (E)\ (2.2)
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where the “CPA projectors™ [7, 10] are defined by

Do AEY=[1+ 7,0t =171, {2.3)
Equations {2.1) and (2.2) can be solved iteratively. This
scheme is the best way [1. 2, 7, 10] of formulating a mean
field theory for the ensemble average of the electronic
Green's function.

An alternative form for the CPA condition (2.2} may be

obtained in terms of the excess scattering operator X, [5]:

2 X (E)=0, (2.4)

where

X E)= [0t =17 =2 (E)], 2.3)
Also Eq. (2.4) can be used in an iterative procedure and, of
course, it is only satisfied when convergence is reached.
However, at the nth iteration there is an excess of scattering

to be removed,

L e, X (E) = X GUE) £0. (26)
A good convergence scheme may be obtained [11] if one
relates X " to the difference between two successive values
of 174, ie,

X G(E)= [T

- (n+1)
fw -1 )

CmEIL @)

thus

f_l An+1)

71 (ny
¥y I

(X SAE) + BN (28)
It has been shown [11] that, when iterated using (2.8} the
CPA equation always converges. provided that the initial

guess is the single site average -matrix (ATA),

t}’i’TA(E) = Z Cx tfz'/?‘(E)- (2-9)

The actual calculation starts from a guess for the alloy
components site potentials, which determine the atomic
scattering matrices f,(E). Then, for each energy, using
Eq. (2.9) as the initial guess, 7.(E) is computed (Eq. (2.1))
and a new guess for 1 { E) is produced by means of Eq. (2.8).
All this has to be iterated until Eq. (2.4) is satisfied (within
an arbitrary tolerance) for each irreducible representation
component. At convergence both t (E)}and t.(E) must reach
stationary values, but, in a real calculation, it happens with
different convergence rates. That is due to the fact that 1 (E)
might be affected by errors in the volume integration,
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therefore an accurate computation of Eq. (2.1) seems to
be necessary. Integration errors are a consequence of the
sharpness of the integrand, and, in order to minimize them,
one has to sample finely the integration domain 2 ..

Such an iterative cycle has to be repeated for each energy
value of a grid, in order to evaluate the charge density and
the electron total energy, by means of an energy integration
(up to the Fermi level) of the site diagonal Green’s function.
This is expressed in terms of some single site quantities and
t.(E) [7]. Then the site potentials might be reconstructed,
by adding up the ionic potentials, the Hartree terms, the
exchange-correlation terms, and the Madelung terms [127.
These new potentials are now the new inputs to the
Euler-Lagrange procedure, continued until one obtains the
charge density stationarity, according to the density
functional theory.

In order to speed up the calculation, it is worth to intro-
duce some trick. One of the most noticeable is the following.
Due to the analytic properties of the Green’s function,
involved in the theory [ 13], the energy integration grid may
be efficiently built as a path in the upper halfplane for the
complex variable E. The great advantage of such a choice is
a smoother behaviour of the integrand of Eq. (2.1) and a
faster convergence of the internal KKR-CPA iterative
scheme. It can be shown, in effect, that for an imaginary part
of the energy arbitrarily high the CPA matrices ¢.(E) reduce
to Eq. (2.9), the zeroth cycle. However, close to the real axis
and, in particular, near the Fermi level, this procedure is still
expensive. Top computational technology methods and
routines [14] are used to take care of such a delicate
integration. Moreover, one can exploit the big advantage of
the KKR-CPA method: its intrinsically parallel structure
{each energy value is a rask). Very efficient and fast codes
have been implemented on parallel supercomputers and
workstations [14].

All that notwithstanding, it is still highly desirable to
reduce, if possible, the amount of calculations involved in
the procedure from Eq. (2.1) to Eq. (2.8). In standard cases,
it involves a matrix inversion for a couple of thousands
g-points per energy value and per CPA iteration. The size
of the matrices is, taking into account for terms up to /=3
in the angular momentum expansion, 16n (or 32 for the
relativistic case), with » number of atoms per unit cell.
Employing standard schemes of solution, usually this proce-
dure must be iterated 5-20 times; thus each energy value
requires about 10* matrix inversions. In order to obtain
the charge density, one has to perform such .calculations
for 100-200 energies. Obtaining charge self-consistency
requires 10-50 external iterations. Therefore a self-consis-
tent KKR-CPA calculation requires a number of matrix
inversions of the order of 107, at least. It can also be shown
that Eq. (2.1) might take up to the 94% of the full calcula-
tions [14]. Of course, improving such a point will greatly
reduce the computing time for a full self-consistent field run.
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2b. Fast Numerical Solution of KKR-CPA Equations

Mostly accepting Akai’s suggestions [9], we point out
two facts. First, when the (initial) guess for ¢. is far [rom the
solution, there is no need to compute the integral (2.1) with
great accuracy. It might be more efficient to improve
progressively the accuracy in the evaluation of the integral,
together with the increase of the confidence in .. Second,
and perhaps more important, the above scheme, cycle by
cycle, erases all the expensive calculations already done for
1 (E). In effect, (£}, before convergence is reached, is not
exact, nevertheless it is not completely wrong and it might be
clever to trace those good contributions to it and take
advantage of them during the next iterations, as we now
show.

In the quoted codes [14], the techniques used for the
evaluation of the integral (2.1) are the special directions
method and the tetrahedron method. The first, the most
expensive, is used for energy values close to the positive real
axis, and the second, which involves a linearization, is used
elsewhere in the grid. In the directions method, several rays,
starting from the 7 point in the irreducibie Brillouin zone
are selected, and the volume integral is computed as a
weighted summation of the corresponding line integrals. In
the tetrahedron method, the integration domain is decom-
posed into tetrahedra of different sizes, at whose centers the
integrand is computed, and the volume integral turns out to
be the sum of the contributions, depending on t_,, cofac-
tors, weighted by some function which depends upon the
corresponding tetrahedra volumes and the determinant of

the KKR matrix. However, in order to have a continuous.

improvement of the integration accuracy, it would be
preferable to have an integration method which allows a
much easier handling of the reciprocal space grid. Such a
request is satisfied by Monte Carlo and Weyl integration
methods, which allow us to use grids without any geometri-
cal restrictions. Both these methods sample the integrand
function domain D uniformly, equally weighting each
contribution. They produce an estimate of the integral,
convergent to the exact value when N goes to infinity, by
means of

1
> Fa@uss T Fa) (210)

l—[

Opposite to standard Monte Carlo methods, where the q;
are chosen randomly, the Weyl method chooses

g p=1-&;—intli- ;) (2.11)
where 4 runs over the cartesian coordinates of the integra-
tion domain and the &, are irrational incommensurate

numbers. This choice ensures uniform sampling and an
increased convergence rate, which is proportional to N [9],
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whilst in the Monte Carlo method it is proportional only to
NY2[15].

The idea is now the following: exploiting the flexibility of
Eq. (2.11), we can achieve convergence of the integral (2.1)
and of the CPA equation contemporarily, by means of the
following algorithm. We start from the ATA guess 1'*’ and,
selecting the first 5, { ~ 10) points out of the N points Weyl
grid (2.11), we compute

(1}__ Z [t{O)fl

S0

G(q:)17". (2.12)

This crude estimate of t, is used to obtain ¢'!’, by means of
Eq. (2.8). This new value will be used to evaluate the
integrand in a set of s, grid points, different from the former
ones. Now, we are going to add to the estimate of 1, new
contributions, hopefully more reliable, without wasting the
oid value.

=2 (-t _
>

2,_1

Glg) "'+ (2.13)

+(1—ay) T

For the generic: jth iteration the last equatlon might be
rewritten as

. 2. 5
ti”:—"l 2 [[(ijl)—l

=1

—Gg)] T H 1 —a) i, (214)

where the coefficients a; have to be chosen in order to give
a bigger weight to the last, more precise, 5; contributions.
We observe that to give equal weight to each point
contribution would be equivalent to assuming that

(2.15)

J
aj=sj/ Y 5.
k=1

We want to find out the properties of the coefficients a;. In
order to study an appropriate choice for these coefficients

we define
i
wjz( Y sk/sj) a,.
k=1

It is clear that, for j= 1, it has to be a; = w, = . Moreover,
when j is large, in order to obtain convergence in Eq. (2.12),
we must weight equaily each contribution. That is,

(2.16)

lim w;=1

Jw

(2.17)

When j is finite, the newest contributions must have a bigger
weight. That is,

w, > 1 {(Vj>1) (2.18)
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This succession must be decreasing, because the accuracy of
the integral must increase with j, i.e.,

(¥j=>1). {2.19)

Wy oy

A proper choice for the set w, must satisfy the above
conditions from (2.16) to (2.19). In this work we fixed 5, =
for all j’s and used the succession

ho—h.
WJ_:J,'_JTJ_—‘_
i

(2.20)

. 7 ;
fij:J'S—m(l—#J), (2.21}

where 0 < < 1, pis a parameter that should be adjusted to
optimize the rate of convergence. For s =9 we found a good
choice to be 0.9 <u <0.99. In our calculations we found
that such an algorithm could cause numerical instabilities in
the CPA equation during the very first iterations, when the
integral estimate is still bad. In order to avoid these
problems, instead of Eq. (2.8), we used a smoother mixing
fors,, ie,

LU t(_'_?'fl"‘(j) _ q[Xfl"i](E) + ‘C(;”(E)] —1

oy’ o (2.22)
where 0 <y <1 should also be adjusted to achieve the
fastest convergence. This form always converges starting
from ATA, as the Mill's algorithm represented by Eq. (2.8),
although the effect of the n parameter is to slow the con-
vergence rate a little. We notice, in effect, that this algorithm
reduces to the Mills iterative scheme (Eq. 2.8) when s goes
to infinity and ;= 1. With our choice of a small value for s,
of course, the number of iterations necessary to obtain
convergence is expected to be fairly large; nevertheless the
total amount of operations should drop.

This algorithm, as we already mentioned, is essentially
the one suggested by Akai | 9], the main difference being the
choice of the CPA equation in the form (2.4) rather than
(2.2). The advantages of this choice have been discussed in
connection with non-zero ofl-diagonal elements of ¢, in
Ref. [5]. As Akai remarked, this scheme of solution of the
KKR-CPA equations is quite effective for evaluating
energy-integrated quantities, such as total energy or
magnetization. However, we point out that the convergence
rate for the energy-dependent quantities, such as density of
states or spectral functions could be slower than the former.
The analysis of these last quantities, indeed, plays a crucial
role in understanding the electronic properties of an alloy,
and one should evaiuate them to a high degree of reliability.
We are going to test, in the following section, such a
reliability, but, first, we want to comment on another point,

We note that, usually, the convergence of the CPA equa-
tion is expected to be slow in those energy ranges where “A”

581/111/2-4
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and “B” states strongly hybridize, because the ATA is far
from the CPA solution. However, in such case, the Weyl
integration formula should work well, because the
integrands are broad functions. On the contrary, when ATA
works well, usually the integrands of Eq. (2.10) are sharp
functions and the Weyl formula shows its weakness, needing
a big N for an accurate integral We hope that such
weaknesses and advantages will compensate each other in
such a mixed scheme.

3. NUMERICAL TESTS

Section 2b algorithm has been coded out and plugged
into the KKR-CPA code. We chose Niys—Ptos random
alloy as a good candidate [ 14, 16] to check the method
reliability for energy-dependent quantities as the density of
states (DOS) and the Bloch spectral functions (BSF). The
DOS is the k-space integral of the BSF. The last is the
imaginary part of the lattice Fourier transform of the
Green’s function. For a pure system it reduces to a sum of
delta functions centered at the band structure points k(E).
The effects of the disorder in a random alloy are to broaden
the BSFs unequally at each k and E. In other words, the
disorder can differently affect different states. As a conse-
quence, the BSFs may be broad or sharp or both in the
same system. Niy.—Pt,s, a “common band” alloy, shows
BSFs with such a variety of behaviour, with broad and
sharp states at different energies and k-points. In other
words (see the last comment of Section 2), this is a system
which presents good and bad features for this method.

A reasonable observable for testing purposes is the DOS.
As we mentioned, it is the BSF integral in the reciprocal
space; thercfore, if for some energy value either the Weyl
integration failed or the CPA convergence was bad, we
expect spikes or non-analytical behaviour to show up in the
DOS. One can define the DOS in terms of the a-projected
DOS as

nE) =Y, c,m(E) 3.1
n(E)= —~Im Trj dr
n we.
X [Fm(Ea T, f) ‘DC{(E) rc(E)f‘I:z(Ea l',l')]. (3‘2)

We refer the reader to [7] for the meaning of the quantities
in the last equation. All the results we present have been
produced using as input the non-relativistic self-consistent
site potentials obtained in Ref. [16].

3a. The Plain Weyl Method

We calculated the Niys Pty DOS for real energy and,
therefore, we attached the special directions method, rather
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than the tetrahedron method. In Fig. la we show our
calculation of the DOS using 36 directions (about 2000
q-points per integral), We name this the exact method. In
Fig. 1b we show the result of the calculation performed
using the scheme illustrated in Section 2. We name this the
plain Weypl method. An upperbound, for the number of
q-points, of 0,000 per energy value was imposed in the last
run. These calculations agree well, apart from a few energy
points in the region between 0.47 and 0.55ry above the
mulffin-tin level. We are going to investigate the sources of
such errors.

In Fig. 2 we plot the CRAY-YMP time {single tasking)
needed for those runs versus the energy (essentially the time
spent to solve the CPA equation}. We observe that the plain
Weyl method does achieve a remarkable overall gain in the
total CPU time (the difference of the areas). We are aware
that the units used as ordinates could be misleading.
However, the exact method routines are highly efficient on
the YMP, as opposed to the plain Wey! method whose loop
sizes are small (cf. 5; in Section 2). Hence, the gain in terms
of CPU time on a scalar machine would increase.

20 } a

15 F

10

20 | b

15 |

Energy - Vmtz (Ryd.)

FIG. 1. Total (full line) and partial (dashed = Ni, dotted = Pt) DOS’s
for Nigs — Pty alloy: (a) exact DOS’s; (b) pluin Weyi DOS's (see text).
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FIG. 2. CRAY-YMP CPU time (scconds) vs energy for exact (full
line) and plain Wey! (dashed line) methods.

Noticeably, the plain Weyl execution times are much larger
in the energy region between 0.35 and 0.55 ry, even higher
than the exacr method times for a bunch of energy values in
the same interval. At those points the achievement of the
double convergence (CPA equation and BZ integral} is very
slow. Eventually, for some points, the upperbound of 90,000
g-points was reached without perfect convergence. This is
the source of the mismatches in Fig. 1, to eliminate which a
much bigger upperbound was necessary, but at the price of
an inconvenient increase of computing time.

In Fig. 3 we show the scattering phase shifts for the site
potentials used. As one can see, the energy region, where the
plain Weyl method shows its drawbacks, lies in between the
d phase shift resonances of the Pt and Ni components. In
such a region the disorder scattering is strong and plenty of
CPA iterations are required. This implies that the subtle

T T T T I I 1 i T I 1 1 ¥ T 1

Energy - Vmtz (Ryd.)

FIG. 3. Single site scattering phase shifts up to /=2: s, dotted lines,
p, dashed lines; 4, full lines; Pt and Ni 4 phase shifts have their resonance
at 0.33 and 0.55 Rydbergs, tespectively.



FAST NUMERICAL SOLUTION OF KKR-CPA EQUATIONS

error correction mechanism of Eq.(2.14), in practice,
dramatically fails in such a situation.

Nevertheless, out of this relatively small interval the
method does work with a remarkable saving of computing
time. To recover these advantages, we are going to explore,
in the next subsection, how fast this method could be
without affecting the results too much, in those ranges
where it already works. In the second next subsection, we
will design new tricks to achieve the same accuracy of
standard calculations, still maintaining the computer time
savings.

3b. Rough Weyl Method

In order to push this method to its limits, we fix the Weyl
integral upperbound to 2000 (i.e., the number of points
needed per iteration by the exact method), in place of 90,000
even if convergence is not reached. We name this the rough
Weyl run. The resulting DOS, shown in Fig 4, is sur-
prisingly, close to the exact one in large energy ranges and,
as expected, very bad in between the Pt and Ni resonances.

We want to remark that (i) this rough Weypl method
involves a much smaller number of matrix inversions than
the exact one, and (ii) in the regions where it works, the
convergence to the exact values of ¢ and 1, is very good and
reliable. That confirms Akai’s results (9] and strongly sup-
ports this method. But the algorithm fails badly exactly at
those energies where the CPA is far from ATA. Our analysis
shows that this algorithm cannot be used as a black box,
because it would lead either to an unpredictable increase of
computing time or to unphysical results, as in Fig. 4. That
might prevent its application to a full self-consistent field
calculation.

On the other hand, as we will discuss next, up in the com-
plex energy plane, when the CPA solution is closer to the
ATA and the integrands arc smooth, this scheme works

T T T 1 1T 1 T T T 1T 1T
20
15
10
]
Energy - vmtz (Ryd.)
FIG. 4. The same as Fig. 1, but using the rowgh Weyl method.

253

fairly well at any energy, producing also big time savings.
This is the reason why one can still have good results for
energy-integrated quantities and the fast convergence Akai
found for those.

3c. Improved Weyl Methods

One question is still unanswered. Can this algorithm
be improved to produce accurate energy-dependent
observables? The answer lies in the accuracy of the integral
in the region between the resonances. As we claimed above,
in such a range the CPA solution for ¢, and the ATA are
critically different. On top of that, the integral is not precise.
That creates an unfavourable situation for the mixed con-
vergence scheme of Section 2b, because in this case there is
no advantage in saving the history of ., whose initial values
are, of course, far from the solution. On the other hand, a
closer look to 7, at each iteration, shows that very soon they
obtain values that are not that far from the CPA solution,
although they are still critically far. This fact brings down
the convergence rate, when used in connection with
Eq. (2.14). One sensible trick is then the following: let us use

1] T 1
20 | a
15
10 f
5 |
20 | b
15 I
10 }
5

1 1 1

Energy — Vatz (Ryd.)

FIG. 5. The same as Fig. 1 but using the (a) Weyl+ + method and
(b} Wep!+ method.
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Energy - Vatz (Ryd.)

FIG. 6. The same as Fig. 2 but for exaer method (full line), Wepl+ +
method (dashed line), and Weyl-+ method (dotted line).

these rough Weyl ¢ values as input for the exact calculation.
We name this the Weyp/+ + method. Another clever trick,
as we will show, is the following: by the same input let us
perform just one complete iteration by the special directions
method. We name this the Wey/+ method.

In Fig. 5 we show the DOS we obtained with the last
methods. As expected, the Wey/+ + method DOS, Fig. 5a,
1s undistinguishable from the exact calenlation of Fig. 1a. It
is somewhat surprising a/so that the Wepl+ method gives
very close results to both the exact DOS. Moreover, going
up the complex plane, all these methods give totally
identical results.

In Fig. 6 we again plot the CRAY-YMP times needed for
the real energy runs of all these methods. As expected, the

T T ¥ T L) T T T T T T ¥ T T ¥

0 .1 .2 .3 .4 .5 .6
€nergy — Vetz (Ryd.)

FIG. 7. CRAY-YMP CPU times (seconds) vs the real part of the
energy at constant imaginary energy ¥ =0.5 Rydbergs: exact method, full
ling; Weyl+ (Weyl+ +)} method, dotted tine; rough Wey! method,
unequally dashed line.
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Weyl+ + method allows some saving (10%) with respect
to the exacr one, but the gain of the Weyl+ method is much
greater (more than 80%).

At high imaginary energy (0.5 ry), interestingly, the
Weyl+ + method converges just after one iteration by the
special directions method, then coinciding with the Weyp! +
method. Also the rough Weypl method gives very close
results. Figure 7 shows the CPU times needed for the exact,
Weyl+ (Weyl+ 4+ ), and rough methods in the complex
plane. This picture shows the great gain in computer time
one can obtain by using this scheme, without losing
accuracy.

4. CONCLUSIONS

After our applications of the Akai scheme, we can draw
the following conclusions:

— Akai’s idea-based methods can be used to save
computing times, but great care must be used for
energy-dependent observables;

—  Our Weyl+ method is a fairly good compromise
between accuracy and savings in evaluating energy-
dependent quantities;

— Energy-integrated quantities produced by all these
methods, by using clever complex integration paths, are
reliable, and the rough Weypl method might be the most
convenient;

— the Weyi+ method, owing to the fact that it takes
about the same amount of computing time for each energy,
seems the best candidate to exploit the paraliel architecture
of modern supercomputers (cach energy is a task ).

The relevance of the present study for a full self-consistent
field calculation is that such methods offer the chance to
reduce the computational effort for each charge iteration.
Perhaps these gains could be much larger if one might com-
bine the external iterative procedure to find the equilibrium
charge density, together with the Brillouin zone integration.
This would be a natural extension of the scheme presented
in Section 2b.
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